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Abstract

Natural convection within closed cavities is of practical and theoretical interest in many nonlinear sciences and industrial applications.
Using a simple lattice Boltzmann (LB) thermal model with the Boussinesq approximation, this study investigates 2D natural convection
flows with nonlinear phenomena within enclosed rectangular cavities. The simulations are performed at a constant Prandtl number of
Pr = 0.71 and the reference Rayleigh numbers of Ra*

6 2 � 104 at the macroscopic scale (Kn = 10�4) and the mesoscopic scale

(Kn = 10�2), respectively. In every case, an appropriate value of the characteristic velocity, i.e. V �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgyDTH

p
, is chosen using a simple

model based on the kinetic theory. The simulations commence to identify the convective-dominated stationary, time-independent steady
flow (i.e. the primary instability condition). The spectral information of secondary instability with an oscillatory flow is then investigated
using a spectrum analysis based on the fast-Fourier transform (FFT) technique. The relationship between the Nusselt number (Nu) and
the reference Rayleigh number (Ra*) is also systematically examined. In general, the simulation results show that unstable flow is gen-
erated at particular values of the Rayleigh number, Knudsen number, and cavity aspect ratio. Meanwhile, the Knudsen number and the
aspect ratio play key roles in determining the evolution of oscillatory flows beyond the threshold of secondary instability.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The natural convection, or namely the buoyant flow, is
the flow motion driven by the temperature or concentra-
tion differences interacted with the gravitational effect.
Due to its importance in many practical engineering appli-
cations and nonlinear sciences, the problem of natural con-
vection within a closed cavity has been the subject of many
investigations. Natural convection inside a cavity may
make the evolution of a fluid system from a stationary state
to a chaotic state characterized by a variety of flow patterns
and complex bifurcation sequences. As a result, the transi-
tion mechanisms inherent in natural convection are of
interest in a wide variety of nonlinear hydrodynamics and
industrial applications [1,2].
0017-9310/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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Previous investigations of natural convection within a
cavity have shown that the primary flow instability, which
represents a transition from diffusive thermal conduction to
a stationary time-independent steady flow structure, occurs
at critical Rayleigh numbers in the range Rac = 103–104 [3]
which is dependent on the cavity aspect ratios. Further-
more, as the Rayleigh number increases, a flow bifurcation
to a time-dependent flow motion with a single-frequency
periodic oscillatory state is observed, namely the secondary
instability. Moreover, as the Rayleigh number is increased
yet further in the range of approximately Ra � 106–108

[3,4], the flow finally transitions to a chaotic state. de Vahl
Davis [1] provided a benchmark numerical solution for a
square cavity heated on the left side, cooled on the right
side, and with adiabatic boundary conditions on the upper
and lower walls. Ostrach [2] investigated natural convec-
tion in cavities subject to various boundary conditions
and temperature fields. Aydin et al. [5] considered the case
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Nomenclature

AR aspect ratio: AR � H/L
c microscopic particle velocity of the lattice Boltz-

mann method (LBM)
ci microscopic particle velocity in each lattice link i

cs speed of sound
f distribution function for the flow field
fD reference thermal diffusive frequency: fD � 1/

tD = a/H2

fP induced oscillatory frequency: fP � 1/tp

f* dimensionless frequency: f* � fP/fD

g distribution function for the temperature field
gy acceleration of gravity in the y-direction
H vertical height of the computational domain
_J i momentum input from the buoyant body force

in each lattice link i

Kn Knudsen number
L horizontal length of the computational domain
N number of induced harmonic frequencies, and

N P 2
Nu Nusselt number
Nu average Nusselt number
Pr Prandtl number
Ra Rayleigh number
Ra* reference Rayleigh number: Ra* � Ra/AR3

Rac critical Rayleigh number for primary instability
of natural convection within enclosed cavities

Re Reynolds number
T dimensionless temperature within the computa-

tional domain
t computing time-steps in the lattice Boltzmann

method (LBM)
t* dimensionless time-step: t* � t/tD

tD reference thermal diffusive time scale: tD = H2/a
tp time of period for the induced oscillatory flow
uA macroscopic flow velocities in the lattice Boltz-

mann method (LBM), where sub-index A is
the components of Cartesian coordinates

V characteristic velocity of natural convection,
V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgyDTH

p

Greek symbols

a thermal diffusivity
b expansion coefficient: b � �1/qref(oq/oT)P

k mean free path
c heat capacity ratio of gas
DT temperature difference
Dt time interval (step) of LBM
m kinetic viscosity
q fluid density
sD relaxation time for the temperature field
sv relaxation time for the flow field
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of natural convection in a rectangular enclosure cooled
from the ceiling, heated from the left wall and with adia-
batic boundary conditions on both the lower and the right
walls. Their results indicated that the Nusselt number is
strongly dependent on the Rayleigh number when the Ray-
leigh number is higher than that associated with the thresh-
old of the primary instability, i.e. Ra > Rac. Ganzarolli and
Milanez [6] performed numerical simulations of natural
convection within a cavity heated from the bottom, cooled
on both sides, and with adiabatic conditions at the upper
boundary. The numerical results revealed that a stationary
unstable flow with a symmetric structure was formed at a
certain value of the Rayleigh number. Furthermore, this
value of the Rayleigh number, i.e. the critical Rayleigh
number of primary instability (Rac), was found to be inde-
pendent of the Prandtl number. Dalal and Das [7] studied
natural convection in cavities of various aspect ratio heated
from the bottom wall, and cooled from both side walls and
upper boundary. According to their results, the Nusselt
number varied as a direct function of the cavity aspect
ratio. Sharif and Mohammad [8] investigated natural con-
vection within cavities with different inclination angles and
cavity aspect ratios. Their studies focused specifically on
the influence of gravitational effects in inducing various
unstable flow structures and the effects of the heating
length along the lower boundary. Overall, the results of
the studies reviewed above indicated that the formation
of unstable flow structures in natural convection within
enclosed cavities is dependent on the boundary conditions,
the aspect ratio (AR) of the cavity, and the direction of
gravitational effect. However, the published literature
makes little or no reference to the effect of the Knudsen
number (e.g. dense or rare gases) on the formation of
unstable flow structures in such problems.

The kinetic-based lattice Boltzmann method (LBM) is a
powerful numerical technique for simulating fluid flows and
modeling the physics in fluids [9–11]. Various numerical
simulations have been performed using different thermal
LB models or Boltzmann-based schemes to investigate the
natural convection problems [12–18]. Although these inves-
tigations demonstrated the capability of LB-based models
in simulating natural convection, an appropriate model
for determining the buoyant velocity scale (V) is still
required for mesoscopic flow applications.

The present study employs a simple thermal LB model
with the Boussinesq approximation to simulate the insta-
bility characteristics of natural convection problems within
a closed, rectangular cavity heated from the lower surface
and cooled from both the upper boundary and the two side
walls. The simulations are performed at different Knudsen
numbers at the macroscopic and mesoscopic scales, i.e.
Kn = 10�4 and Kn = 10�2, respectively. A reference Rayleigh
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number is defined as Ra� � Ra
AR3 to be independent of the

cavity aspect ratio (AR). It is well known that numerical
simulations using the LBM would become inaccurate when
flows are associated with strong heat transfer effect (e.g. at
high Rayleigh number) or when the flows are away from
incompressible regime as reported in Refs. [9,11,13,
16,17,19,25]. Based on this reason, the reference Rayleigh
number is restricted within Ra* 6 2 � 104 at both the mac-
roscopic and mesoscopic scales. Furthermore, the simula-
tions consider cavities with aspect ratios in the range
0.5 6 AR 6 2.0 (AR � H/L). In every case, the Prandtl
number is assumed to be 0.71. Finally, appropriate values
of the buoyant characteristic velocity ðV �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgyDTH

p
Þ

are determined using a model formulated according to
the principles of kinetic theory.

Current simulations commence to identify the flow and
cavity geometry conditions under which the initial diffusive
thermal conduction transitions to stationary, time-indepen-
dent flow (i.e. the primary instability). A spectrum analysis
based on the fast-Fourier transform (FFT) technique is
then performed to identify the time-dependent oscillatory
flow frequency associated with the secondary instability.
Finally, relationship between the reference Rayleigh num-
ber and the buoyancy-induced (natural convective)
enhancement of heat transfer (as represented by Nusselt
number) is examined.

2. Numerical method

2.1. Lattice Boltzmann model

In investigating the natural convection problem, the
effect of viscous heat dissipation can be neglected for appli-
cations in incompressible flow [17] such that a simple lattice
Boltzmann method can be used in this study. The LB model
used here is the same as that employed in [16–18]. The ther-
mal LB model utilizes two distribution functions, f and g,
for the flow field and the temperature field, respectively.
The density and the temperature distribution functions,
i.e. the f and g, are defined as the probability of finding par-
ticles at site x at time t moving with the particle velocity ci

during the time interval Dt in each lattice direction (link)
i. The two distribution functions obey their respective lat-
tice Boltzmann transport equations with the single relaxa-
tion Bhatnagar–Gross–Krook (BGK) approximation, i.e.

fiðxþ ciDt; t þ DtÞ � fiðx; tÞ ¼
Dt
sv
½f eq

i ðx; tÞ � fiðx; tÞ� þ _J i

for the flow field ð1Þ

giðxþ ciDt; t þ DtÞ � giðx; tÞ ¼
Dt
sD
½geq

i ðx; tÞ � giðx; tÞ�

for the temperature field ð2Þ

where _J i is the momentum input from the buoyant body
force, sv and sD are the relaxation times for the flow and
temperature LB equations, respectively, and cs ¼ c=

ffiffiffi
3
p

is
the speed of sound. The kinetic viscosity m and the thermal
diffusivity a are defined in terms of their respective
relaxation times, i.e. m ¼ c2

s ðsv � 1=2Þ and a ¼ c2
s ðsD � 1=2Þ,

respectively. Note that the limitation 0.5 < s should be sat-
isfied for both relaxation times to ensure that viscosity and
thermal diffusivity are positive. Furthermore, the local
equilibrium distributions are given by [19]

f eq
i ðx; tÞ ¼ wiq 1þ ciA � uA

c2
s

þ uAuB

2c2
s

ciAciB

c2
s

� dAB

� �� �

for the flow field ð3Þ

geq
i ðx; tÞ ¼ wih 1þ ciA � uA

c2
s

þ uAuB

2c2
s

ciAciB

c2
s

� dAB

� �� �

for the temperature field ð4Þ

Note that the equilibrium distribution function for the tem-
perature field, i.e. the Eq. (4), can be used at first-order
[15,18]. Having computed the values of these local equilib-
rium functions, the flow properties are defined as

Flow density : q ¼
X

i

fi ð5Þ

Momentum : quA ¼
X

iA

ficiA ð6Þ

Temperature population : T ¼
X

i

gi ð0 6 T 6 1Þ ð7Þ

In the equations above, sub-indices A and B denote the
components of the Cartesian coordinates with implied
summation for repeated indices. Furthermore, wi is the
weighting which can be determined to achieve isotropy of
the fourth-order tensor of the velocities and Galilean
invariance [19]. Applying the Chapman–Enskog expan-
sion, the continuity equation and the Navier–Stokes equa-
tions can be recovered exactly at the second-order
approximation from the LB equation of the flow field,
i.e. Eq. (1), if the density variation is sufficiently small with-
out the additional body force term _J i, as derived in [20]

oq
ot
þr � ðquÞ ¼ 0 ð8Þ

oðquAÞ
ot

þrA � ðquAuBÞ ¼ �rAðc2
s qÞ þ mrB � ðrAquB þrBquAÞ

ð9Þ

Similarly, as derived in [21], the convective–diffusive equa-
tion can be obtained from the LB equation of the temper-
ature field given in Eq. (2), i.e.

oT
ot
þ ðu � rÞT ¼ r � ðarT Þ ð10Þ

where T denotes the temperature. In simulating the natural
convection problem, the additional buoyant body force
term, _J i, can be formulated by the Boussinesq approxima-
tion, i.e.

_J i ¼ 3wi � gy � b � T ðx; tÞ � qðx; tÞ � ciy ð11Þ

where gy is the acceleration of gravity acting in the y-direc-
tion of the lattice links; b is the thermal expansion coeffi-
cient, defined as b � �1/qref(o q/oT)P, where qref is the



P.-H. Kao et al. / International Journal of Heat and Mass Transfer 51 (2008) 3776–3793 3779
reference density of the fluid by simply setting qref = 1; and
ciy is the y-component of ci. Furthermore, the terms q(x, t)
and T(x, t), i.e. the dimensionless local density and temper-
ature, are calculated at each lattice site using Eqs. (5) and
(6), respectively. Note that this body force term does not
affect to the local density of flow but it does change the flow
momentum as a result of the buoyancy. Additionally, the
results of a previous investigation [16,17] have shown that
the simple thermal LB model employed in the current study
is applicable to modeling of incompressible thermal flows
with negligible viscous dissipation.

To simulate the natural convection problems using the
LBM, it is first necessary to determine the characteristic
velocity ðV �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgyDTH

p
Þ and then to obtain the corre-

sponding kinetic viscosity (m) and thermal diffusivity (a)
through the following relationships involving the Prandtl
number and Rayleigh number, respectively:

m2 ¼ V 2H 2Pr
Ra

ð12Þ

and

a ¼ m
Pr

ð13Þ

where Pr � m
a is the Prandtl number, Ra � V 2H2

ma is the Ray-
leigh number, and H denotes the length scale in which
the cavity height is chosen for current cases, the relaxa-
tion times, sv and sD, for flow and temperature LB equa-
tions given in Eqs. (1) and (2) can then be determined. It
implies that both the kinetic viscosity (m) and thermal dif-
fusivity (a) cannot be fixed as constants in LBM simula-
tions if the characteristic velocity (V) is kept constant.
Accordingly, Section 2.3 of this paper develops a model
for determining appropriate values of the characteristic
velocity, V.

The present simulations are based on the D2Q9 model,
and hence the relative weightings in Eqs. (3), (4), and (11)
are assigned values of wi = 4/9 for jcij = 0 (for the static
particle), wi = 1/9 for jcij = 1, and wi = 1/36 for
j ci j¼

ffiffiffi
2
p

. Regarding the boundary conditions of the flow
field, the solid walls are assumed to be no slip, and thus the
bounce-back scheme is applied. This scheme specifies
the outgoing directions of the distribution functions as
the reverse of the incoming directions at the boundary sites.
Furthermore, for the temperature field, the local tempera-
ture is defined as T ðx; yÞ ¼

P
igiðx; yÞ in Eq. (7) and the

no-slip condition (ux = uy = 0) is applied at all of the solid
nodes. Consequently, the treatment of the temperature
population (i.e. the distribution function g) at the adiabatic
walls can be simplified by applying the bounce-back
scheme to the temperature distribution function gi such
that a ‘‘heat flux-free state” is obtained in each lattice direc-
tion for the specific nodes associated with the adiabatic
boundary condition, i.e. _qi ¼ oT i=oxi ¼ ðgi � g�iÞ=Dx ¼ 0.
Moreover, the local equilibrium distribution for the tem-
perature field at the thermal wall with a constant tempera-
ture can be given by Eq. (4).
2.2. Dimensionless frequency

The present simulations employ the following dimen-
sionless frequency to quantify the oscillatory flow frequency
generated within the enclosed cavity. The dimensionless
frequency, i.e. f*, is defined as

f � � fP

fD
¼ H 2

a � tp
ð14Þ

where fP is the oscillatory frequency of the flow induced by
thermal convection, i.e. fP ¼ 1

tp
, in which tp is the period of

the oscillatory flow, and fD is the reference thermal diffusive
frequency, defined as fD ¼ a

H2. However, the reciprocal of
the dimensionless frequency represents the ratio of the
oscillatory time scale to the diffusive time scale, i.e.
f � ¼ tD

tp
. Therefore, the dimensionless frequency given in

Eq. (14) is meaningless for stationary convection flow since
tp = 0. From the definition of the dimensionless frequency,
it is apparent that the oscillatory flow moves more rapidly
as the value of the dimensionless frequency increases. In
general, the value of f* computed in the LB simulations
provides a convenient way of obtaining the value of tp

for practical engineering applications.
To determine the dimensionless frequency f* via spec-

trum analysis, the following dimensionless time-step t* is
introduced:

t� � t0

tD
ð15Þ

where t0 is the number of time-steps in LB simulation, and
tD is the diffusive time scale described above. For practical
engineering applications, a heat-flow meter with chart-re-
corder can be used to measure unsteady heat flux. The fre-
quency of this unsteady heat flux, therefore, can be
analyzed. Based on the definition depicted in Eq. (23),
the simulated total heat flux is approximately equal to
Nu � a � DT/H. Accordingly, the unsteady Nusselt values
of the oscillatory flow can then be utilized instead of the
measured heat flux signal for FFT spectrum analysis in
the present LB simulations.
2.3. Model for determining the appropriate value of buoyant

characteristic velocity in LBM simulations for natural

convection problems

Choosing an appropriate value of the characteristic

velocity ðV �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgyDTH

p
Þ is essential when simulating nat-

ural convection problems using Boussinesq approximation.
However, there are no theoretical criteria available for
determining appropriate values of V for different natural
convection problems, and hence a value is generally chosen
by the empirical test in numerical simulations. To over-
come this difficulty, the present study develops a model
for determining an appropriate characteristic velocity value
based on the principle of kinetic theory. According to
kinetic theory [22,23], the Knudsen number has the form
[24]
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Kn ¼
ffiffiffiffiffi
pc
2

r
�Ma

Re
ð16Þ

where Ma is the Mach number, Re is the Reynolds number,
and the heat capacity ratio to be c = 5/3 for a monatomic
ideal gas and c = 7/5 for a diatomic gas. Eq. (16) implies

that the mean free path can be written as k ¼
ffiffiffiffi
pc
2

p
m
cs

. As a

result, the Knudsen number for the current natural convec-
tion case can be written as

Kn � k
H
¼

ffiffiffiffiffi
pc
2

r
� m
cs � H

ð17Þ

According to the definition of Rayleigh number, the Ray-
leigh number also has the form:

Ra ¼ V 2H 2

m2
� Pr ð18Þ

Therefore, an expression for V2 can be formulated by com-
bining the squared Eq. (17): Kn2 ¼ pcm2

2c2
s H2 and Eq. (18) to get

V 2 ¼ Ra � Kn2 � c2
s

pcPr=2
; where c2

s ¼
c2

3
ð19Þ

In other words, the characteristic velocity is a function of
the Rayleigh number, Knudsen number, Prandtl number,
and the value of c, all of which are specified as given values
in LBM simulations. Eq. (19), therefore, provides the
means to determine an appropriate value of the buoyant
velocity for LBM in simulating natural convection prob-
lems at both the macroscopic and the mesoscopic scales.

Importantly, the value assigned to the characteristic
velocity (V) should satisfy the incompressible limit as
reported in [13,16,17]. This incompressible condition
requires the flows to have a small Mach number, i.e.
Ma � Uavg/cs, where Uavg is the buoyancy-induced average
velocity throughout domain and is governing by the speci-
fied value of the characteristic velocity (V). As a result, lar-
ger values of V may lead to computational instability of the
numerical model, resulting in inaccurate simulation results.
The relationship between V and Uavg depends on the
numerical model applied, the boundary conditions, the grid
size, and the specific geometry of the domain in natural
convection problems under investigation. However, no lit-
erature is available to discuss the relationship between V

and Uavg for various problems of natural convection with
complex flow instability phenomena. Accordingly, the cur-
rent simulations deliberately restrict the range of the
Table 1
Comparison of Nusselt numbers computed at different Rayleigh numbers usin

Ra: 103

Nu by de Vahl Davis, 1983 [1] 1.118

Nu by present LBM

Used V value according to Eq. (14) 2.134 � 10�6

Grid: 41 � 41 1.106 (1.07%)
Grid: 81 � 81 1.113 (0.45%)
Grid: 161 � 161 1.115 (0.24%)
Rayleigh number in order to ensure compliance with the
incompressible condition.

3. Validation of characteristic velocity model

The characteristic velocity model given in Eq. (19) was
validated for the problem of natural convection within a
2D square cavity by performing a grid-independent study.
An assumption was made that the initial stationary flow
was heated from the left wall, i.e. TLeft = 1, while the right
wall was maintained at a constant low temperature, i.e.
Tright = 0. Meanwhile, the upper and bottom boundary
walls were assigned adiabatic boundary conditions. A ver-
tical gravitational effect was applied in the y-direction.
Regarding the flow field, the square cavity was assumed
to be closed and the no-slip boundary conditions were
imposed at each of the four solid walls. Finally, the initial
conditions within the computational domain were specified
as: T(x,y) = 0, ux(x,y) = uy(x,y) = 0, and a uniform den-
sity of q(x,y) = 1.

The simulations were based on the D2Q9 (two-dimen-
sional, nine-velocity) model and an assumption was made
that the 2D cavity had an aspect ratio of AR = 1. The com-
putational domain was mapped using a square lattice, i.e.
Dx = Dy, and the simulations were performed using a vari-
ety of grid systems, namely 41 � 41, 81 � 81 and 161 � 161,
respectively. The Prandtl number (Pr � m/a) was assumed
to have a constant value of 0.71 in every case. Meanwhile,
the definitions of the Rayleigh number (Ra) and the Nusselt
number (Nu) were given as

Ra ¼
b � DT � gy � L3

ma
ð20Þ

and

Nu ¼ 1þ hux � T i
a � DT =L

ð21Þ

where L is the horizontal length of the closed cavity,
DT = 1 is fixed and represents the temperature difference
between the left and right boundaries, and h i denotes the
average value over the whole domain.

In the validation simulations, appropriate values of V

were obtained using the model presented in Eq. (19) with
a fixed Knudsen number of Kn = 10�4 at the macroscopic
scale and Rayleigh numbers of Ra = 103, 104, 105 and 106,
respectively. Table 1 presents the value of V and the Nus-
selt number computed at each Rayleigh number using the
g different grids with results presented in [1]

104 105 106

2.243 4.519 8.825

2.134 � 10�5 2.134 � 10�4 2.134 � 10�3

2.207 (1.60%) 4.420 (2.19%) 8.406 (4.48%)
2.231 (0.54%) 4.488 (0.69%) 8.696 (1.18%)
2.238 (0.24%) 4.506 (0.28%) 8.769 (0.35%)



Fig. 1. Steady temperature and stream function contours at macroscopic scale (Kn = 10�4) in different cavities with aspect ratios from AR = 0.5 to
AR = 1.5, Pr = 0.71, and various Ra*: (a1) AR=0.5: temperature contours at Ra* = 103, (a2) AR = 0.5: temperature contours at Ra* = 2 � 104, (a3)
AR = 1.0: temperature contours at Ra* = 103, (a4) AR = 1.0: temperature contours at Ra* = 2 � 104, (a5) AR = 1.5: temperature contours at Ra* = 103,
and (a6) AR = 1.5: temperature contours at Ra* = 2 � 104; (b1) AR = 0.5: stream function contours at Ra* = 103, (b2) AR = 0.5: stream function
contours at Ra* = 2 � 104, (b3) AR = 1.0: stream function contours at Ra* = 103, (b4) AR = 1.0: stream function contours at Ra* = 2 � 104, (b5)
AR = 1.5: stream function contours at Ra* = 103, and (b6) AR = 1.5: stream function contours at Ra* = 2 � 104.
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Fig. 1 (continued)
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three different grid systems. The present results are com-
pared with those presented in [1] for validation purposes.
The current results are similar to those presented in [15–
17,25,26]. The percentage data given in parentheses indi-
cate the deviation of the current simulation results from
the solutions presented in [1]. When performing the simula-
tions using a grid size of 81 � 81 or 161 � 161, the discrep-
ancy between the two sets of results is less than 2%. Even
when using the coarsest grid, i.e. 41 � 41, the error is still
less than 5%. Overall, the simulation results confirm the
feasibility of using the current LB scheme and characteris-
tic velocity model to investigate natural convection prob-
lems at the macroscopic scale.

4. Simulations of natural convection within closed

rectangular cavities

The present simulations employ a simple thermal LB
model with the Boussinesq approximation for the buoyant
body force term and a characteristic velocity model to
investigate the 2D natural convection inside a closed cavity
at different reference Rayleigh numbers Ra* 6 2 � 104, in
which Ra* � Ra/AR3 is defined to be independent of the
cavity aspect ratio (AR), at both the macroscopic scale
(Kn = 10�4) and the mesoscopic scale (Kn = 10�2), respec-
tively. In every case, the Prandtl number is assumed to be
0.71. The geometry effect is investigated by repeating the
simulations at various values of the cavity aspect ratio,
i.e. AR � H/L = 0.5, 1.0, 1.5 and 2.0, respectively. The
instability phenomena associated with the resulting oscilla-
tory flow frequencies are then investigated using a fast-Fou-
rier transform (FFT) technique, with 217 dimensionless
time-steps (i.e. t* in Eq. (15)). Finally, the relationship
between the Nusselt number and the reference Rayleigh
number is systematically examined as a function of the
aspect ratio and the Knudsen number.

The present simulations were based on the D2Q9 model
in which the 2D cavity was meshed using a square lattice.
In accordance with the validation results presented in Sec-
tion 3, each unit length of the computational domain, i.e.
L = 80 � Dx for the lower boundary, was mapped using
81 grid nodes. The number of grid points in the vertical
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direction (i.e. height H) of the cavity was then determined
by the aspect ratio (AR � H/L) considered in the particu-
lar simulation. In modeling the flow field, all four solid
boundaries were assigned no-slip conditions. Meanwhile,
in simulating the temperature field, the lower wall was
Fig. 2. Temperature and stream function contours at macroscopic scale (Kn =
ratio of AR = 2.0, Pr = 0.71, and various Ra*: (a1) temperature contours in st
flow at Ra* = 2 � 104 and time-step = 6 � 106, and (a3) FFT spectrum analys
Ra* = 2 � 104; (b1) stream function contours in stationary state at Ra* = 1.5 �
time-step = 6 � 106, and (b3) FFT spectrum analysis results for relationship be
assigned a constant temperature of TBottom = 1, while the
other three walls were each assigned a constant, low tem-
perature, i.e. TUpper = TLeft = TRight = 0, respectively. The
initial conditions within the domain were specified as:
T(x,y) = 0, ux(x,y) = uy(x,y) = 0, and a uniform density
10�4) for stationary and oscillatory unstable flows in cavity with aspect
ationary state at Ra* = 1.5 � 104, (a2) temperature contours of oscillatory
is results for variation of Nusselt number with dimensionless time-step at
104, (b2) stream function contours of oscillatory flow at Ra* = 2 � 104 and
tween dimensionless frequency and oscillatory amplitude at Ra* = 2 � 104.



Fig. 3. Variation of Nusselt number with reference Rayleigh number at
macroscopic scale (Kn = 10�4) for cavities with aspect ratios in the range
0.5 6 AR 6 2.0, Pr = 0.71, and Ra*

6 2 � 104.
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of q(x,y) = 1. Finally, the Rayleigh number and Nusselt
number definitions were revised to

Ra ¼
b � DT � gy � H 3

ma
ð22Þ

and

Nu ¼ 1þ huy � T i
a � DT=H

ð23Þ

where H is the vertical height of the cavity, DT = 1 is con-
stant and denotes the temperature difference between the
upper and bottom boundaries. Note that in the case of un-
steady flow, the Nusselt data presented in this study repre-
sent time-averaged values (i.e. Nu).

As described previously, the buoyant velocity scale con-
sidered in the present simulations was determined via the
model given in Eq. (19). Rearranging Eq. (19), the Rayleigh

number can be written as Ra ¼ V 2�pc�Pr
2�Kn2�c2

s
, where V2 = bgyDT H

and Kn2 ¼ pc=2H 2 � m2=c2
s , and the height of the cavity can

be written as H = AR � L. If a reference Rayleigh number

is defined as Ra� � Pr � V 2H2

m2

� �
H¼L

, the characteristic veloc-

ity model can then be reformulated as

V 2 ¼ AR3 Ra� � Kn2 � c2
s

pcPr=2
; where AR � H

L
ð24Þ

where the Kn, AR, and Ra� ¼ Ra
AR3 are all specified as the gi-

ven values. The following simulations performed in this
study are all based on this revised characteristic velocity
model given by Eq. (24). However, it should be noted that
the higher value of V may break the incompressible condi-
tion described in Section 2.3. Consequently, the reference
Rayleigh numbers considered in the current simulations
are deliberately restricted to the range Ra* 6 2 � 104 at
both the macroscopic scale (Kn = 10�4) and the mesoscop-
ic scale (Kn = 10�2).

4.1. Natural convection within cavities at macroscopic scale
(Kn = 10�4)

The simulations commenced by investigating the charac-
teristics of 2D natural convection at the macroscopic scale
(Kn = 10�4) within closed cavities with aspect ratios rang-
ing from AR = 0.5 to 2.0. Fig. 1 presents the simulated
temperature and stream function contours in cavities with
aspect ratios of AR = 0.5, 1.0 and 1.5, respectively, at ref-
erence Rayleigh numbers of Ra* = 103 and Ra* = 2 � 104.
Overall, the results demonstrate that the flow conditions
considered in these particular simulations, i.e. Ra* 6 2 �
104, 0.5 6 AR 6 1.5 and Pr = 0.71, generate only symmet-
ric stationary unstable flows (i.e. a primary instability) at
the macroscopic scale, i.e. no bifurcation to secondary
instability occurs. As shown in Figs. 1(a2), (a4) and (a6),
when the aspect ratio of the cavity is increased (from
AR = 0.5 to AR = 1.5) at higher values of the reference
Rayleigh number, the length of the ‘‘finger structure” in
the temperature contours also increases, since the larger
AR value provides the longer space of H to develop the fin-
ger structure along the y-direction which denotes the direc-
tion for heat transfer in present cases, i.e. HAR=1.5 >
HAR = 0.5. When the flow state contains a longer finger
structure, the initial symmetric, stationary flow becomes
unstable when a small perturbation is introduced. This
may cause the symmetric flow structure to be broken and
transitions to secondary instability with an unsteady oscil-
latory flow. Note that the small perturbation is self-induced
during the calculation when the flow is at higher Rayleigh
number, i.e. no artificial perturbation is required for LB
simulations in present cases.

When the aspect ratio is increased to AR = 2.0, the
length of the finger structure in the temperature contours
is far longer than that in a cavity with a lower aspect ratio.
As a result, the initial symmetric, stationary flow becomes
unstable when any small perturbation is generated, prompt-
ing a transition to secondary instability conditions with an
unsteady oscillatory flow state. Fig. 2 presents the steady
and unsteady solutions of the temperature and stream func-
tion contours at the macroscopic scale and the FFT spec-
trum analysis of the oscillatory flows. The results indicate
that secondary instability occurs at reference Rayleigh
numbers of approximately Ra* = 1.5 � 104–2 � 104 in an
enclosed cavity with an aspect ratio of AR = 2.0. Figs.
2(a3) and (b3) show that a single-frequency oscillatory flow
with a dimensionless frequency of f �1 ¼ 40:07 is generated at
Ra* = 2.0 � 104. Meanwhile, only one harmonic frequency
with a value of f �2 ¼ 82:37 with an amplitude value far smal-
ler than the amplitude of the dominant frequency ðf �1 Þ when
Ra* 6 2 � 104 is formed at the macroscopic scale.



Fig. 4. Steady temperature and stream function contours at mesoscopic scale (Kn = 10�2) in different cavities with aspect ratios from AR = 0.5 to
AR = 1.0, Pr = 0.71, and various Ra*: (a1) AR = 0.5: temperature contours at Ra* = 103, (a2) AR = 0.5: temperature contours at Ra* = 2 � 104, (a3)
AR = 1.0: temperature contours at Ra* = 103, and (a4) AR = 1.0: temperature contours at Ra* = 2 � 104; (b1) AR = 0.5: stream function contours at
Ra* = 103, (b2) AR = 0.5: stream function contours at Ra* = 2 � 104, (b3) AR = 1.0: stream function contours at Ra* = 103, and (b4) AR = 1.0: stream
function contours at Ra* = 2 � 104.
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Fig. 5. Temperature and stream function contours at mesoscopic scale (Kn = 10�2) for stationary and oscillatory unstable flows in cavity with aspect ratio
of AR = 1.5, Pr = 0.71, and various Ra*:(a1) temperature contours in stationary state at Ra* = 8 � 103, (a2) temperature contours of oscillatory flow at
Ra* = 8.5 � 103 and time-step = 2 � 105, (a3) temperature contours of oscillatory flow at Ra* = 1.5 � 104 and time-step = 7 � 104, and (a4) temperature
contours of oscillatory flow at Ra* = 2 � 104 and time-step = 5 � 104; (b1) stream function contours in stationary state at Ra* = 8 � 103, (b2) stream
function contours of oscillatory flow at Ra* = 8.5 � 103 and time-step = 2 � 105, (b3) stream function contours of oscillatory flow at Ra* = 1.5 � 104 and
time-step = 7 � 104, and (b4) stream function contours of oscillatory flow at Ra* = 2 � 104 and time-step = 5 � 104.
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Fig. 5 (continued)
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Fig. 3 illustrates the variation of the Nusselt number
within Ra* 6 2 � 104 at the macroscopic scale (Kn = 10�4)
as a function of the aspect ratio. It is evident that both
the cavity aspect ratio and the Rayleigh number play key
roles in determining the onset of flow instability. The pri-
mary instability condition occurs at actual Rayleigh num-
bers between Ra = 103 and 104, with the exact value
determined by the aspect ratio. The results confirm that sec-
ondary instability with an unsteady oscillatory flow is
formed at the macroscopic scale only in enclosed cavities
with aspect ratios of AR = 2.0 and Ra* 6 2 � 104. In gen-
eral, it can be seen that the value of the Nusselt number
increases with increasing reference Rayleigh number and
increasing aspect ratio.

4.2. Natural convection within cavities at mesoscopic scale

(Kn = 10�2)

The second set of simulations performed in the current
study was designed to investigate the problem of 2D nat-
ural convection within closed cavities at the mesoscopic
scale (Kn = 10�2). As before, an appropriate value of
the buoyant characteristic velocity was determined using
the model given in Eq. (24) and the flow simulations were
deliberately restricted to the reference Rayleigh number
Ra* 6 2 � 104.

Fig. 4 presents the temperature and stream function con-
tours at Ra* = 103 and 2 � 104, respectively, for enclosed
cavities with aspect ratios of AR = 0.5 and AR = 1.0. Over-
all, the results indicate that at the mesoscopic scale, these
flow and geometry conditions result in the formation only
of stationary primary instability flow with a symmetric flow
structure. In other words, no bifurcation to secondary insta-
bility flow takes place when Ra* 6 2 � 104, AR = 0.5, and
AR = 1.0.

Figs. 5 and 6 illustrate the steady and unsteady temper-
ature contours, stream function contours, and the FFT
spectrum analysis results for the corresponding oscillatory
flows, respectively, in a cavity with an aspect ratio of
AR = 1.5. As shown in Fig. 5, secondary instability with
an unsteady oscillatory flow is generated at reference Ray-
leigh numbers within the range Ra* = 8 � 103 to 8.5 � 103.
It should be noted that secondary instability was found at
the macroscopic scale only in a cavity with AR = 2.0
within Ra* 6 2 � 104. In general, the results presented in
Figs. 5 and 6 show that as the reference Rayleigh number
increases toward Ra* 6 2 � 104, the initial stationary
unstable flow transitions to a symmetry-breaking oscilla-
tory flow structure via the frequency doubling route. How-
ever, the dominant frequency is insensitive to the increasing
reference Rayleigh number and remains constant at
f �1 � 10. Furthermore, period flow motion with doubly
harmonic frequencies relationship are approximately satis-
fied, i.e. f �N � f �1 � N where N is the number of induced har-
monic frequencies and N P 2.

Fig. 7 presents the temperature and stream function
contours at the mesoscopic scale in a cavity with an
increased aspect ratio of AR = 2.0 for reference Rayleigh
numbers of Ra* = 6 � 103, 6.5 � 103, 104, and 2 � 104,
respectively. Fig. 8 illustrates the corresponding FFT spec-
trum analysis results. The figures reveal that secondary
instability flow is generated at the reference Rayleigh num-
ber of approximately Ra* = 6 � 103–6.5 � 103. This value
is slightly lower than that observed in the cavity with a
lower aspect ratio of AR = 1.5. However, the dominant
frequency of the oscillatory flow, i.e. f �1 ¼ 12–13, is similar
to that found in the lower aspect ratio case. Fig. 8 shows
that when Ra* 6 1.8 � 104, the oscillatory flow with doubly
harmonic frequencies relationship are approximately satis-
fied and the number of harmonic frequencies increases with
increasing Rayleigh number. At Ra* 6 1.5 � 104, the
amplitude of the dominant oscillatory frequency ðf �1 Þ is lar-
ger than that of the induced harmonic frequencies (f �N ,
where N P 2). However, at a reference Rayleigh number



Fig. 6. FFT spectrum analysis results for oscillatory unstable flows at mesoscopic scale (Kn = 10�2) in cavity with aspect ratio of AR = 1.5, Pr = 0.71, and
various Ra*: (a1) variation of Nusselt number with dimensionless time-step at Ra* = 8.5 � 103, (a2) variation of Nusselt number with dimensionless time-
step at Ra* = 1.5 � 104, and (a3) variation of Nusselt number with dimensionless time-step at Ra* = 2 � 104; (b1) relationship between dimensionless
frequency and oscillatory amplitude at Ra* = 8.5 � 103, (b2) relationship between dimensionless frequency and oscillatory amplitude at Ra* = 1.5 � 104,
and (b3) relationship between dimensionless frequency and oscillatory amplitude at Ra* = 2 � 104.
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of Ra* = 1.8 � 104, the oscillatory amplitude of the pri-
mary dominant frequency f �1 is lower than that of some
of the induced harmonic frequencies, as shown in
Fig. 8(b4). Finally, when the reference Rayleigh number



Fig. 7. Temperature and stream function contours at mesoscopic scale (Kn = 10�2) for stationary and oscillatory unstable flows in cavity with aspect ratio
of AR = 2.0, Pr = 0.71, and various Ra*: (a1) temperature contours in stationary state at Ra* = 6 � 103, (a2) temperature contours of oscillatory flow at
Ra* = 6.5 � 103 and time-step = 1.5 � 105, (a3) temperature contours of oscillatory flow at Ra* = 104 and time-step = 6 � 104, and (a4) temperature
contours of oscillatory flow at Ra* = 2 � 104 and time-step = 6 � 104; (b1) stream function contours in stationary state at Ra* = 6 � 103, (b2) stream
function contours of oscillatory flow at Ra* = 6.5 � 103 and time-step = 1.5 � 105, (b3) stream function contours of oscillatory flow at Ra* = 104 and
time-step = 6 � 104, and (b4) stream function contours of oscillatory flow at Ra* = 2 � 104 and time-step = 6 � 104.
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is increased further to Ra* = 2.0 � 104, the amplitude of
the noise induced by the flow perturbation increases signif-
icantly and causes the flow transitions to a near-chaotic
state as exhibited in Fig. 8(b5).

Fig. 9 presents the variation of the Nusselt number with
the reference Rayleigh number over the Ra* 6 2 � 104 at
the mesoscopic scale. As observed in Fig. 3 for the macro-
scopic scale, it can be seen that the Rayleigh number and
the aspect ratio both play significant roles in determining
the onset of unstable flow and the value of the Nusselt
number at the mesoscopic scale. In general, the reference
Rayleigh number associated with secondary unstable flow
reduces as the aspect ratio increases. Furthermore, for a
constant aspect ratio, the Nusselt number increases with
increasing reference Rayleigh number. Additionally, prior
to the onset of secondary instability, the Nusselt number
also increases with increasing aspect ratio at a constant ref-
erence Rayleigh number. Overall, the results presented in
Fig. 9 show that the onset of primary instability is rela-
tively insensitive to the aspect ratio and occurs at reference
Rayleigh numbers in the range of Ra* = 103–104 in every
case. In this sense, the current results are consistent with
those presented at the macroscopic scale in Fig. 3, however,
the onset of secondary instability is strongly dependent on
the aspect ratio. In the cases of AR = 1.5 and 2.0, respec-
tively as shown in Fig. 9, it can be seen that there is a sig-
nificant reduction in the slope of the Nu–Ra* curves after
the onset of secondary instability. In other words, it can
be inferred that unsteady (secondary) unstable flow fails
to yield an effective enhancement in the heat transfer effect
of natural convection systems within enclosed cavities with
aspect ratios in the range 1.5 6 AR 6 2.0.

4.3. Comparison of results at macroscopic and mesoscopic

scales

Fig. 10 illustrates the variation of the Nusselt number
with the reference Rayleigh number at both the macro-
scopic and the mesoscopic scales in cavities with aspect
ratios ranging from AR = 0.5 to AR = 2.0 and Ra* 6 2 �



Fig. 8. FFT spectrum analysis results for oscillatory unstable flows at mesoscopic scale (Kn = 10�2) in cavity with aspect ratio of AR = 2.0, Pr = 0.71, and
various Ra*: (a1) variation of Nusselt number with dimensionless time-step at Ra* = 6.5 � 103, (a2) variation of Nusselt number with dimensionless time-
step at Ra* = 104, (a3) variation of Nusselt number with dimensionless time-step at Ra* = 1.5 � 104, (a4) variation of Nusselt number with dimensionless
time-step at Ra* = 1.8 � 104, and (a5) variation of Nusselt number with dimensionless time-step at Ra* = 2 � 104; (b1) relationship between dimensionless
frequency and oscillatory amplitude at Ra* = 6.5 � 103, (b2) relationship between dimensionless frequency and oscillatory amplitude at Ra* = 104, (b3)
relationship between dimensionless frequency and oscillatory amplitude at Ra* = 1.5 � 104, (b4) relationship between dimensionless frequency and
oscillatory amplitude at Ra* = 1.8 � 104, and (b5) relationship between dimensionless frequency and oscillatory amplitude at Ra* = 2 � 104.
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Fig. 8 (continued)
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104. It can be seen that the Nusselt number varies as a func-
tion of the Rayleigh number, the Knudsen number, and the
cavity aspect ratio at both scales. In general, the results
indicate that the Knudsen number has a significant effect
in inducing secondary unstable flow, but has little effect
on the onset of primary instability. For a constant aspect
ratio, a larger value of the Knudsen number (i.e.
Kn = 10�2) induces unstable oscillatory flow (i.e. secondary
instability) at a lower Rayleigh number. Although the
onset of secondary instability is also dependent on the
aspect ratio of the cavity, the results suggest that the effect
of the Knudsen number is more dominant. In other words,
the Knudsen number has a greater effect on the heat trans-
fer characteristics of the natural convection system within
the closed cavity than the aspect ratio in the present
simulations.

Fig. 10 shows that a higher value of the Knudsen num-
ber (Kn = 10�2) has a significant effect on the flow structure
and yields a slight improvement in the heat transfer effect
with increasing AR and Ra*. From inspection, the com-
puted values of the Nusselt number at the mesoscopic scale
are slightly higher than those at the macroscopic scale
when the flow is in a stationary state. However, following
the onset of secondary instability with an oscillatory flow,
the values of the Nusselt number at the mesoscopic scale
are lower than those without secondary instability com-
puted at the macroscopic scale for a given Ra* value. In
other words, it can be inferred that the unsteady unstable
flow associated with secondary instability may not yield a
significant improvement in the heat transfer of natural con-
vection systems within closed cavities.

Finally, in order to ensure the LB simulations in present
study are performed within the incompressible regime, the
maximum Mach number is checked by calculating
Ma � huyi/cs at Ra = 2 � 104 and Kn = 10�2 for every
aspect ratio, i.e. AR = 0.5, 1.0, 1.5, and 2.0, respectively.
The result exhibited that the maximum Mach number
was in the order of 10�3, which is much smaller than the
limit of Ma < 0.3. Therefore, the flow is within the incom-
pressible regime.



Fig. 9. Variation of Nusselt number with reference Rayleigh number at
mesoscopic scale (Kn = 10�2) for cavities with aspect ratios in the range
0.5 6 AR 6 2.0, Pr = 0.71, and Ra*

6 2 � 104.

Fig. 10. Comparison of solutions obtained at the macroscopic scale
(Kn = 10�4) and the mesoscopic scale (Kn = 10�2), respectively, for
variation of Nusselt number with reference Rayleigh number for cavities
with aspect ratios in the range 0.5 6 AR 6 2.0, Pr = 0.71, Ra*

6 2 � 104.
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5. Conclusions

In general, the present simulation results have shown
that the flow structures generated in a natural convection
within a closed cavity are strongly dependent on the Knud-
sen number, the Rayleigh number, and the aspect ratio of
the cavity. Specifically, the primary instability is generated
at a critical Rayleigh number of approximately Rac =
103–104 irrespective of the Knudsen number. Meanwhile,
the cavity aspect ratio also seems insensitive relatively to
the critical Rayleigh number for primary instability. How-
ever, the bifurcation to secondary instability takes place
only at certain aspect ratios, and Knudsen numbers, and
reference Rayleigh numbers, respectively, i.e. Ra* = 1.5 �
104–2 � 104 for AR = 2.0 at the macroscopic scale
(Kn = 10�4), and Ra* = 8 � 103–8.5 � 103 for AR = 1.5
and Ra* = 6 � 103–6.5 � 103 for AR = 2.0 at the meso-
scopic scale (Kn = 10�2). In other words, the formation of
secondary instability flow is determined primarily by the
Knudsen number and the aspect ratio of the cavity. Once
the threshold of secondary instability is exceeded, a bifurca-
tion to a single-frequency periodic oscillatory flow with a
symmetry-breaking structure may be observed. As the value
of the Rayleigh number increases, harmonic frequencies are
induced via the frequency doubling route ðf �N ¼ f �1 � NÞ.
However, as the Rayleigh number is increased further, the
number of harmonic frequencies or flow perturbations is
then induced, causing the doubly harmonic frequencies
relationship to be broken and the flow finally transitions
to a near-chaotic state.

Regarding the relationship between the Nusselt number
and the reference Rayleigh number, the results show that
unsteady unstable flow fails to provide an effective
enhancement in the heat transfer performance of the natu-
ral convection system when the system is confined within a
cavity with a high aspect ratio, e.g. the results shown in
Fig. 9 at the mesoscopic scale. Overall, the results of the
flow sequence from stationary unstable flow to periodic
oscillatory flow presented in this study for the macroscopic
scale (Kn = 10�4) with AR = 1.5 and 2.0 are in good qual-
itative agreement with those reported in previous studies
[3,4]. Furthermore, the current results demonstrate the
importance of the Knudsen number, which represents the
characteristics of the flow depend on the length scale of
interest (e.g. at the macroscopic or mesoscopic scale), when
investigating natural convection problems.

The LB model employed in this study provides a
straightforward means of simulating the instability charac-
teristics of natural convection with complicated nonlinear
physics at both the macroscopic and mesoscopic scaled.
The results presented in this study provide useful insights
into the formation of primary instability in natural convec-
tion systems, the subsequent transition to secondary insta-
bility, and the flow structures associated with each regime.
In addition, the simple model proposed for determining
appropriate values of the buoyant characteristic velocity
provides a convenient and reliable tool for LB simulations
of natural convection at the macroscopic or mesoscopic
scale.

To enable the simulation of natural convection systems
with higher Rayleigh numbers or in the fully-turbulent
regime, respectively, future studies would apply the inter-
polation supplemented lattice Boltzmann method (ISLBM)
presented in [15] and the multi-relaxation time (MRT)
method. Furthermore, a more robust thermal LB model
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will be developed which takes into account the effects of
viscous thermal dissipation and utilizes an appropriate tur-
bulence model.
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